First, the facts: Electric vehicles require only a fraction of the roughly 1,400 machined components used in internal combustion vehicles.
And the 200 components that are needed are smaller, lighter and must therefore withstand higher levels of torque.
Together, those developments have led to a gradual shift from traditional mild steels and cast irons to stronger alloy steels like 4340 and 8620, as well as increased use of advanced high-strength steels (AHSS) for chassis and body components.
Such metals are a bit tougher, slightly more abrasive, and where machining is concerned, produce longer, stringier chips than their traditional automotive alternatives.
Industry specialists at Sandvik Coromant “expect this shift to include a continued increase in the use of high-strength steels, from around 15 percent of all materials used in automotive manufacturing in 2010 to 38 percent in 2030,” EV Design & Manufacturing reported.
Machining Changes Gears
So buckle up, automotive machinists. What those trends indicate is that you will soon be producing fewer parts for your internal combustion engine (ICE) customers, retooling for electric vehicle (EV) motors and powertrains, and machining increasingly high quantities of metals that wear tools much faster than they have for most of your careers.
Whether today’s projections will hold true long term remains to be seen, but there’s little doubt that EV development and sales are on the rise.
During a recent visit to a well-known supplier for numerous automakers, John Winter, Eastern U.S. product manager for Sandvik Coromant, was queried about a new grade of steel, a forged material that the company had chosen for an output shaft. Though not privy to the actual grade, he says it presented notable challenges to achieving chip control.
“Part of the problem was that they’d gone to a different forging supplier, so their tool life was suffering and they couldn’t break the chip consistently,” Winter says. He then made what seemed like a strange suggestion: “It earned me a funny look, but I told them to run it dry.”
Advanced Coating Capabilities
Winter assumed that Sandvik Coromant’s latest generation of Inveio coating would be up to the task, and he was right. Chip control was phenomenal, he says, and judging by the amount of edge wear, he estimated that the customer could increase tool life by at least 30 percent.
Talk to Us!
Leave a reply
Your email address will not be published. Required fields are marked *